

PII: S0040-4039(96)00950-1

Synthesis of 2-Substituted Indolo Pyridin-4-ones.

Michèle Meyer and Michèle Guyot.

Laboratoire de Chimie, associé au C.N.R.S., Muséum National d'Histoire Naturelle, 63 rue Buffon, 75005 Paris, France.

Summary. The synthesis of 2-substituted indolo-pyridin-4-ones was achieved in good yields by a one-pot reaction between N-Me amino-2-indole (as hydriodide) with acetylenic esters.

Copyright © 1996 Elsevier Science Ltd

In the course of a programme devoted to the search of bioactive compounds from marine invertebrates, two α -carbolines, the cytotoxic grossularines-I and -II, isolated from the tunicate *Dendrodoa grossularia* ¹ as the first naturally occurring α -carbolines, are likely to act on DNA ². This prompted us to undertake efforts towards the synthesis of these natural compounds and analogues. Several syntheses of α -carbolines are described and recently a new approach to α -carbolines bearing a dimethyl-amino-imidazole ring was proposed ^{3,4}.

The synthesis of α -carbolines in the grossularine series can be envisaged starting from indolo-pyridin-4-ones 3. As previously reported, the condensation of N-methyl amino-2 indole (as hydriodide), with β -diketones 5 or with diketenes yielded indolopyridin-2-ones accompanied, in this latter case, by minor amounts (16%) of indolopyridin-4-ones 6, caracterized on the basis of differences in the UV absorbance in respect to indolopyridin-2-ones. Hence another method to obtain indolo-pyridin-4-ones was desirable.

A general route to quinolone heterocycle synthesis was investigated, namely the Michael addition of a nucleophile moiety to an acetylenic carbonyl compound ⁷. According to this scheme, condensation of anilines with acetylenic esters ⁸, allenic esters ⁹ or acetylenic derivatives devoid of carboxylate groups using Pd(0) catalyzed carbonylation ¹⁰ led to useful methods for syntheses of 2-substituted quinolones. Hence we investigated the possibility of condensing N-substituted amino-2 indole with suitable acetylenic derivatives to obtain indolo-pyridinones. In this paper we describe the first unambiguous synthesis of indolo-pyridin-4-ones.

N-methyl amino-2 indole hydriodide 1 was chosen as the starting material, which was easily prepared according to ¹¹. Condensation of 1 with dicarbomethoxy-2-acetylene 2a was achieved by heating (reflux) during 5 hours a methanolic solution of 1 (1mM) with 2a (1.2 mM). Workup furnished the indolo-pyridin-4-one 3a in a 65% yield after purification on preparative t.l.c. (chlororform/acetone 7/3), (m.p. 264° C, M.S. M+ 256, IR: 3400, 1730, 1680 cm⁻¹). Direct (HMOC¹²) and long range (HMBC¹³) 2D ¹H-¹³C NMR

heteronuclear correlations confirmed the pyridin-4-one structure and led to assign all the proton and the carbon chemical shifts (Table). The reaction may proceed through an enamine adduct formed via a Michael addition, which undergoes cyclization to indolo-pyridinone 3a. Other easily available acetylenic substrates were condensed with 1 by the same procedure to obtain the indolopyridinones: 3b ($R = C_6H_5$)(65 %), m.p. 172°C, M.S. (C.I.): [M+H]+ 275; 3c ($R = C_6H_3$), 60%, m.p.178-180°C, M.S. (E.I.) M+ 212. (Scheme 1).

Table . ¹ H	(300 MHz)	and ^{13}C (75 MHz) NMR	data of compounds	$3a, 3b, 3c (\delta ppm)$
------------------------	-----------	----------------	-------------	-------------------	---------------------------

Compounds	3a (DMSO d-6)(i)		3b (CDCl3)(ii)		3c (CDCl3)(iii)	
Assignment	1 _H	¹³ C	¹ H	13 _C	1 _H	13 _C
la		151.4		150.9		154.2
2	1	134.7		147.0		147.5
3	6.91 (s)	102.0	6.40 (s)	100.3	6.98 (s)	109.3
4	1	162.3] ``	160.2]	160.2
4a	l	104.2		104.7	l i	105.3
5a		119.2		119.2		123.7
5	8.45 (d,1H, J = 8)	123.4	7.62 (dd)	124.1	7.52 (d)	126.8
6	7.24 (dd, 1H, $J = 8.8$)	119.4	7.62 (m, 1H)	120.3	7.33 (dd)	120.8
7	7.47 (dd, 1H, J = 8.8)	125.4	7.40	120.7	7.35 (dd)	122.4
8	7.58 (d, <i>J</i> =8)	109.3	7.0 (d)	108.9	7.05 (s)	111.7
8a	1 '' '	139.4] ' '	138.7	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	141.7
N-CH ₃	3.84 (s, 3H)	27.7	4.0	28.7	4.0	30.2

i) COOCH₃ δ 4.01 (52.7, 166.4. ii) C₆H₅ δ 7.52 (d, 2H), 7.35 (m, 3H), (126.4 (2C), 118.6 (2C), 128.7, 139.5. iii) CH₃ δ 2.4 (23.2)

When the starting material was a 3-substituted amino-2 indole such as the amino-2 carbethoxy-3 indole 4, the condensation with 2a afforded a pyrimido [3,2-a] indole-3-carboxylate 5¹⁴via the expected intramolecular cyclization occurring on the indolic NH (68%).

Scheme 2.

Acknowledgements. We thank M. Baran-Marszak for NMR spectra, J.P. Brouard for mass spectra, and EU for financial support (Contract MAS-2-CT 91-0004).

References

- 1. Moquin-Pattey C., Guyot M., Tetrahedron, 1989, 45, 3445-3450.
- 2. Helbeque N., Moquin C., Bernier J.-L., Morel E., Guyot M., Henichart J.-P. Cancer Biochem. Biophys., 1987, 9, 271-279.
- 3. Achab S., Guyot M., Potier P. Tetrahedron Lett. 1993, 34, 2127-2130.
- 4. Achab S., Guyot M., Potier P. Tetrahedron Lett. 1995, 36, 2615-2618.
- Kost A.N., Sagitullin R.S., Gorbunov V.I., Modyanov N.N., Khim. Geterotsikl. Soedin., 1970, 3, 359-363.(C.A. 73, 56 049x)
- 6. Borisov N.N., Sagitullin R.S., Kost A.N., Khim. Geterotsikl. Soedin., 1972, 48-54 (C.A. 76, 153 639j)
- 7. Hendrickson J.B., Rees R., Templeton J.F., J. Amer. Chem. Soc., 1964, 86, 107-111.
- 8. Heindel N.D., Brodof T.A., Kogelschatz J.E., J. Heterocycl. Chem., 1966, 3, 222-223.
- 9. Tamura Y., Tsugoshisa T., Mohri S.-I., Kita Y., J. Org. Chem., 1985, 50, 1542-1544.
- 10. Torii S., Okumoto H., Xu L.X., Tetrahedron Lett., 1991, 32, 237-240.
- 11. Hoffman H., Kebrele J. U.S. patent n° 2875212, 1959; C.A. 1959, 53, 1615.
- 12. Bax A., S. Subramanian S., J. Magn. Reson., 1986, 67, 565-569.
- 13. Bax A., Summers M.F., J. Am. Chem. Soc., 1986, 108, 2093-2094.
- 14. ¹H NMR (CDCl₃, δ ppm): 8.62 (d) H-8; 7.78 (d) H-5; 7.42 (dd) H-7; 7.23 (dd) H-6; 6.52 (s) H-3; 4.42 (q) OCH₂-CH₃; 4.01 (s) COOMe; 1.42 (t) OCH₂-CH₃. M.S. M⁺ 312.

(Received in France 9 April 1996; accepted 14 May 1996)